Metric terms and transformations

Coordinate transformations

grudge.geometry.forward_metric_nth_derivative(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, xyz_axis, ref_axes, dd=None)meshmode.dof_array.DOFArray[source]

Pointwise metric derivatives representing repeated derivatives of the physical coordinate enumerated by xyz_axis: \(x_{\mathrm{xyz\_axis}}\) with respect to the coordiantes on the reference element \(\xi_i\):

\[D^\alpha x_{\mathrm{xyz\_axis}} = \frac{\partial^{|\alpha|} x_{\mathrm{xyz\_axis}} }{ \partial \xi_1^{\alpha_1}\cdots \partial \xi_m^{\alpha_m}}\]

where \(\alpha\) is a multi-index described by ref_axes.

Parameters
  • xyz_axis – an integer denoting which physical coordinate to differentiate.

  • ref_axes – a tuple of tuples indicating indices of coordinate axes of the reference element to the number of derivatives which will be taken. For example, the value ((0, 2), (1, 1)) indicates taking the second derivative with respect to the first axis and the first derivative with respect to the second axis. Each axis must occur only once and the tuple must be sorted by the axis index.

  • dd – a DOFDesc, or a value convertible to one. Defaults to the base volume discretization.

Returns

a DOFArray containing the pointwise metric derivative at each nodal coordinate.

grudge.geometry.forward_metric_derivative_mat(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)numpy.ndarray[source]

Computes the forward metric derivative matrix, also commonly called the Jacobian matrix, with entries defined as the forward metric derivatives:

\[J = \left\lbrack \frac{\partial x_i}{\partial \xi_j} \right\rbrack_{(0, 0) \leq (i, j) \leq (n, m)}\]

where \(x_1, \dots, x_n\) denote the physical coordinates and \(\xi_1, \dots, \xi_m\) denote coordinates on the reference element. Note that, in the case of immersed manifolds, J is not necessarily a square matrix.

Parameters

dd – a DOFDesc, or a value convertible to one. Defaults to the base volume discretization.

Returns

a matrix containing the evaluated forward metric derivatives of each physical coordinate, with respect to each reference coordinate.

grudge.geometry.inverse_metric_derivative_mat(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)numpy.ndarray[source]

Computes the inverse metric derivative matrix, which is the inverse of the Jacobian (forward metric derivative) matrix.

Parameters

dd – a DOFDesc, or a value convertible to one. Defaults to the base volume discretization.

Returns

a matrix containing the evaluated inverse metric derivatives.

grudge.geometry.first_fundamental_form(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)numpy.ndarray[source]

Computes the first fundamental form using the Jacobian matrix:

\[\begin{split}\begin{bmatrix} E & F \\ F & G \end{bmatrix} := \begin{bmatrix} (\partial_u x)^2 & \partial_u x \partial_v x \\ \partial_u x \partial_v x & (\partial_v x)^2 \end{bmatrix} = J^T \cdot J\end{split}\]

where \(u, v\) are coordinates on the parameterized surface and \(x(u, v)\) defines a parameterized region. Here, \(J\) is the corresponding Jacobian matrix.

Parameters

dd – a DOFDesc, or a value convertible to one. Defaults to the base volume discretization.

Returns

a matrix containing coefficients of the first fundamental form.

grudge.geometry.inverse_first_fundamental_form(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)numpy.ndarray[source]

Computes the inverse of the first fundamental form:

\[\begin{split}\begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1} = \frac{1}{E G - F^2} \begin{bmatrix} G & -F \\ -F & E \end{bmatrix}\end{split}\]

where \(E, F, G\) are coefficients of the first fundamental form.

Parameters

dd – a DOFDesc, or a value convertible to one. Defaults to the base volume discretization.

Returns

a matrix containing coefficients of the inverse of the first fundamental form.

Geometry terms

grudge.geometry.inverse_surface_metric_derivative(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, rst_axis, xyz_axis, dd=None)[source]

Computes the inverse surface metric derivative of the physical coordinate enumerated by xyz_axis with respect to the reference axis rst_axis. These geometric terms are used in the transformation of physical gradients.

Parameters
  • rst_axis – an integer denoting the reference coordinate axis.

  • xyz_axis – an integer denoting the physical coordinate axis.

  • dd – a DOFDesc, or a value convertible to one. Defaults to the base volume discretization.

Returns

a DOFArray containing the inverse metric derivative at each nodal coordinate.

grudge.geometry.pseudoscalar(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)pymbolic.geometric_algebra.MultiVector[source]

Computes the field of pseudoscalars for the domain/discretization identified by dd.

Parameters

dd – a DOFDesc, or a value convertible to one. Defaults to the base volume discretization.

Returns

A MultiVector of DOFArrays.

grudge.geometry.area_element(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)meshmode.dof_array.DOFArray[source]

Computes the scale factor used to transform integrals from reference to global space.

Parameters

dd – a DOFDesc, or a value convertible to one. Defaults to the base volume discretization.

Returns

a DOFArray containing the transformed volumes for each element.

Normal vectors

grudge.geometry.normal(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd)[source]

Get the unit normal to the specified surface discretization, dd. This supports both volume discretizations (where ambient == topological dimension) and surface discretizations (where ambient == topological dimension + 1). In the latter case, extra processing ensures that the returned normal is in the local tangent space of the element at the point where the normal is being evaluated.

Parameters

dd – a DOFDesc as the surface discretization.

Returns

an object array of DOFArray containing the unit normals at each nodal location.

Curvature tensors

grudge.geometry.second_fundamental_form(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)numpy.ndarray[source]

Computes the second fundamental form:

\[\begin{split}S(x) = \begin{bmatrix} \partial_{uu} x\cdot n & \partial_{uv} x\cdot n \\ \partial_{uv} x\cdot n & \partial_{vv} x\cdot n \end{bmatrix}\end{split}\]

where \(n\) is the surface normal, \(x(u, v)\) defines a parameterized surface, and \(u,v\) are coordinates on the parameterized surface.

Parameters

dd – a DOFDesc, or a value convertible to one.

Returns

a rank-2 object array describing second fundamental form.

grudge.geometry.shape_operator(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)numpy.ndarray[source]

Computes the shape operator (also called the curvature tensor) containing second order derivatives:

\[\begin{split}C(x) = \begin{bmatrix} \partial_{uu} x & \partial_{uv} x \\ \partial_{uv} x & \partial_{vv} x \end{bmatrix}\end{split}\]

where \(x(u, v)\) defines a parameterized surface, and \(u,v\) are coordinates on the parameterized surface.

Parameters

dd – a DOFDesc, or a value convertible to one.

Returns

a rank-2 object array describing the shape operator.

grudge.geometry.summed_curvature(actx: arraycontext.context.ArrayContext, dcoll: grudge.discretization.DiscretizationCollection, dd=None)meshmode.dof_array.DOFArray[source]

Computes the sum of the principal curvatures:

\[\kappa = \operatorname{Trace}(C(x))\]

where \(x(u, v)\) defines a parameterized surface, \(u,v\) are coordinates on the parameterized surface, and \(C(x)\) is the shape operator.

Parameters

dd – a DOFDesc, or a value convertible to one.

Returns

a DOFArray containing the summed curvature at each nodal coordinate.