Welcome to grudge’s Documentation!¶
Here’s an example to solve the PDE
\[\begin{split}\begin{cases}
u_t + 2\pi u_x = 0, \\
u(0, t) = -\sin(2\pi t), \\
u(x, 0) = \sin(x),
\end{cases}\end{split}\]
on the domain \(x \in [0, 2\pi]\). We closely follow Chapter 3 of [Hesthaven_2008].
import numpy as np
import pyopencl as cl
from meshmode.array_context import PyOpenCLArrayContext
from meshmode.mesh.generation import generate_box_mesh
import grudge.geometry as geo
import grudge.op as op
from grudge.discretization import make_discretization_collection
from grudge.dof_desc import FACE_RESTR_INTERIOR, BoundaryDomainTag, as_dofdesc
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
actx = PyOpenCLArrayContext(queue)
nel = 10
coords = np.linspace(0, 2*np.pi, nel)
mesh = generate_box_mesh((coords,),
boundary_tag_to_face={"left": ["-x"],
"right": ["+x"]})
dcoll = make_discretization_collection(actx, mesh, order=1)
def initial_condition(x):
# 'x' contains ndim arrays.
# 'x[0]' gets the first coordinate value of all the nodes
return actx.np.sin(x[0])
def left_boundary_condition(x, t):
return actx.np.sin(x[0] - 2 * np.pi * t)
def flux(dcoll, u_tpair):
dd = u_tpair.dd
velocity = np.array([2 * np.pi])
normal = geo.normal(actx, dcoll, dd)
v_dot_n = np.dot(velocity, normal)
u_upwind = actx.np.where(v_dot_n > 0,
u_tpair.int, u_tpair.ext)
return u_upwind * v_dot_n
vol_discr = dcoll.discr_from_dd("vol")
left_bndry = as_dofdesc(BoundaryDomainTag("left"))
right_bndry = as_dofdesc(BoundaryDomainTag("right"))
x_vol = actx.thaw(dcoll.nodes())
x_bndry = actx.thaw(dcoll.discr_from_dd(left_bndry).nodes())
uh = initial_condition(x_vol)
dt = 0.001
t = 0
t_final = 0.5
# timestepper loop
while t < t_final:
# extract the left boundary trace pair
lbnd_tpair = op.bv_trace_pair(dcoll,
dd=left_bndry,
interior=uh,
exterior=left_boundary_condition(x_bndry, t))
# extract the right boundary trace pair
rbnd_tpair = op.bv_trace_pair(dcoll,
dd=right_bndry,
interior=uh,
exterior=op.project(dcoll, "vol",
right_bndry, uh))
# extract the trace pairs on the interior faces
interior_tpair = op.local_interior_trace_pair(dcoll, uh)
Su = op.weak_local_grad(dcoll, uh)
lift = op.face_mass(dcoll,
# left boundary weak-flux terms
op.project(dcoll,
left_bndry, "all_faces",
flux(dcoll, lbnd_tpair))
# right boundary weak-flux terms
+ op.project(dcoll,
right_bndry, "all_faces",
flux(dcoll, rbnd_tpair))
# interior weak-flux terms
+ op.project(dcoll,
FACE_RESTR_INTERIOR, "all_faces",
flux(dcoll, interior_tpair)))
duh_by_dt = op.inverse_mass(dcoll,
np.dot([2 * np.pi], Su) - lift)
# forward euler time step
uh = uh + dt * duh_by_dt
t += dt
Plotting numerical solution uh
in results in
(Source code
, png
, hires.png
, pdf
)
Contents:
- Discretization Collection
- Degree of freedom (DOF) descriptions
- Metric terms and transformations
- Discontinuous Galerkin operators
- Transferring data between discretizations
- Reductions
- Helper functions
- Discontinuous Galerkin Models
- References
- Installation
- User-visible Changes
- Licensing
- Acknowledgments
- 🚀 Github
- 💾 Download Releases